实用型风力涡轮发电机输出功率从 20 kW~ 30 kW,现在的最高水平可达 4.5 MW。它一般使用三个转子轮叶,因为实验表明,这种结构可提供效率、动态性能与结构经济性之间的最佳平衡。核心部件一般包括转子、一个增加发电机轴速的齿轮箱、发电机、电路接口以及控制回路(图 2)。最大的问题一直是如何稳定转子速度,以实现最高的发电量。虽然风力涡轮发电机是一种机械电子系统,无法将各个关键部件隔离开来,但转子控制原理却是一个决定性因素。控制系统必须在从静止无风直到可能一个世纪才出现一次的多方向、多速度变化的狂风的情况下保护机器的运行。作为相关质量的一个指标,Vestas公司的 V90 系列3MW风力涡轮发电机的转子组件重量为40吨,尽管它使用了许多昂贵的碳纤维复合材料。
失速控制的简单性掩饰了问题
一种限制功率获取的方法是使转子组件转动到不受风吹的位子。偏转系统一般用于保持转子迎着风向,它包括风速传感器、风向传感器、一个电动或液压电动机驱动装置、接口电路以及使发电机舱旋转的齿轮与轴承。传感器组件经常位于发电机舱的后方,通常是一个带风向标的三环风速计。其它技术包括超声设备,如 Vestas公司 V90-3.0MW 上使用的一对超声装置。实际上,转子后面的风速略低于真实的风速,这是由于旋转翼片的局部低压效应所造成的。虽然这一差异不很重要,但特性化可以补偿这样的误差。然而,由于经验表明采用偏转系统的速度控制的结果并不好,所以一般设计要么保持迎风的最大功率位置,要么将发电机舱转到最小风能方向以实现停机。
用来稳定能量获取的最简单的气动方法是采用转子有一个固定的倾斜角的被动失速(停转)控制。在给定的转子速度下,风速增加会使气流分散在轮叶表面上,产生失速效应。这种气流分散会自动限制能量的获取,但却与空气密度和轮叶表面抛光质量有关。这种方法还要求稳固的电网条件以及一个强大的发电机来保持稳定性。如果电网连接失效或发生电力故障,就必须预防转子超速,从而要求转子上有气动刹车装置,以及在输入轴上有普通的碟式机械刹车装置。由于转子有固定的倾斜角,而且不能转至最高转矩位置以利于起动,所以有时需要以电动
机模式运行发电机,使转子加速到与电网同步的速度。最后,这一结构必须足够牢固,能承受失速控制特有的大动态负载。
